4.3 LOGARITHMIC FUNCTIONS AND THEIR APPLICATIONS

Logarithmic function is the inverse of an exponential function.

If an exponential function is of the form $g(x) = b^x$ then its inverse (logarithmic function) $f(x) = \log_b x$ x > 0. b > 0 $b \neq 1$ is and such that $f \circ g(x) = g \circ f(x) = x$. b is called the base.

Changing Exponential to logarithmic and Logarithmic to exponential form

- 1. If $y = \log_b x$ then $x = b^y$ is its exponential form
- 2. If $y = b^x$ then $x = \log_b y$ is its logarithmic form

Example 1

Write each of the following equations in exponential form

a)
$$2 = \log_5(x+7)$$

a)
$$2 = \log_5(x+7)$$
 b) $\log_{(x+2)} 3 = y-7$ c) $\log_x x^5 = 5$

Solution

a)
$$5^2 = x + 7$$

a)
$$5^2 = x + 7$$
 b) $3 = (x + 2)^{(y-7)}$ c) $x^5 = x^5$

c)
$$x^5 = x^5$$

Example 2

Write each of the following equations in logarithmic form

a)
$$11 = 11$$
 b) $\left(\frac{1}{8}\right)^3 = 2k + 5$ c) $b^{\log_b 7} = 7$ c) $2^3 = 8$

$$=7$$
 c)

7 c)
$$2^3 = 8$$

Solution

a)
$$\log_{11} 11 = 1$$
 b) $3 = \log_{\frac{1}{8}} (2k + 5)$ c) $3 = \log_{2} 8$

c)
$$3 = \log_2 8$$

Basic Logarithmic Properties

1.
$$\log_a a = 1$$

2.
$$\log_a 1 = 0$$

$$3. \log_a a^k = k$$

$$4. \ a^{\log_a x} = x$$

$$5. \log_{\frac{1}{a}} a^k = -k$$

Example 3

Evaluate each of the following;

a)
$$\log_{13} 1 + \log_2 \frac{1}{16}$$
 b) $\log_{\frac{1}{2}} 4 - 4^{\log_4 5}$ c) $\frac{\log_2 8}{\log_3 27}$

Solution

a)
$$\log_{13} 1 + \log_2 \frac{1}{16} = 0 + -4 \log_2 2 = -4$$

b)
$$\log_{\frac{1}{2}} 4 - 4^{\log_4 5} = -2 - 5 = -7$$

c)
$$\frac{\log_2 8}{\log_3 27} = \frac{\log_2 2^3}{\log_3 3^3} = \frac{3\log_2 2}{3\log_3 3} = 1$$

Example 4

Find
$$f^{-1}(x)$$
 if $f(x) = 3^{-2x+3} + 1$

Solution

$$y = 3^{-2x+3} + 1 \Leftrightarrow y - 1 = 3^{-2x+3}$$

$$\Rightarrow \log_3(y - 1) = -2x + 3$$

$$\Rightarrow 2x = 3 - \log_3(y - 1)$$

$$\Rightarrow x = \frac{3}{2} - \frac{1}{2}\log_3(y - 1)$$

$$\Rightarrow f^{-1}(x) = \frac{3}{2} - \frac{1}{2}\log_3(x - 1)$$

Example 5

Find $f^{-1}(\frac{1}{4})$ if f(x) is an exponential function such that f(2)=16.

Solution

$$f(x) = b^{x} \Rightarrow f^{-1}(x) = \log_{b} x$$

$$f(2) = 16 \Rightarrow b^{2} = 16$$

$$\Rightarrow b = 4$$

$$\therefore f^{-1}(\frac{1}{4}) = \log_{4} \frac{1}{4} = -1$$

Graphs of logarithmic functions.

a)
$$0 < b < 1$$

b) b > 1

Properties of graphs of Exponential functions:

- 1. y intercept at (1,0).
- 2. Domain is $(0,+\infty)$, Range is $(-\infty,+\infty)$
- 3. x axis is an asymptote
- 4. Behaviour of the graph when
 - a) b > 1

as
$$y \to +\infty$$
 , $x \to +\infty$

as
$$y \to -\infty$$
 , $x \to 0$

An increasing function.

b)
$$0 < b < 1$$

as
$$y \to +\infty$$
 , $x \to 0$

as
$$y \to -\infty$$
 , $x \to +\infty$

A decreasing function

- 5. One-to one function.
- 6. No symmetry with respect to x, y or origin

Example 6

Sketch the graph of;

a)
$$f(x) = \log_{\frac{1}{2}} x$$
 b) $f(x) = -\log_2(x+1)$

c)
$$f(x) = \log_{\frac{1}{3}}(-x)$$
 d) $f(x) = 4 + \log_2(x-1)$ e) $f(x) = \log_2[-(x+1)]$

Solution

a) Method 1

X	4	2	1	$\frac{1}{2}$	1/4
у	-2	-1	0	1	2

Method 2

$$y = \log_{\frac{1}{2}} x \Leftrightarrow \left(\frac{1}{2}\right)^y = x$$

as
$$y \to +\infty$$
, $x \to \left(\frac{1}{2}\right)^{\infty} = 0$

as
$$y \to -\infty$$
, $x \to \left(\frac{1}{2}\right)^{-\infty} = \infty$

$$x$$
 – Intercept $(1,0)$

b) Method 1

$$y = \log_2 x \Leftrightarrow 2^y = x$$
as $y \to +\infty$, $x \to 2^\infty = \infty$
as $y \to -\infty$, $x \to 2^{-\infty} = 0$

$$x - \text{Intercept } (1,0)$$

The graph of $f(x) = \log_2(x+1)$ is the same as the graph of $f(x) = \log_2 x$ shifted horizontally 1 unit to the left.

$$f(x) = \log_2(x+1)$$

The graph of $f(x) = -\log_2(x+1)$ is the same as the graph $f(x) = \log_2(x+1)$ reflected in the x-axis

Method 2

$$y = -\log_2(x+1) \Leftrightarrow 2^{-y} - 1 = x$$

as
$$y\to +\infty$$
 , $x\to 2^{-\infty}-1=-1$ as $y\to -\infty$, $x\to 2^{\infty}-1=\infty$ $x-$ Intercept $\left(0,0\right)$

c)

The graph of $f(x) = \log_{\frac{1}{3}}(-x)$ is the same as the graph of $f(x) = \log_{\frac{1}{3}}x$ reflected in the y-axis

d)
$$y = 4 + \log_2(x - 1) \iff 2^{y-4} + 1 = x$$

as
$$y \to +\infty$$
, $x \to 2^{\infty-4} + 1 = +\infty$ as $y \to -\infty$, $x \to 2^{-\infty-4} + 1 = 1$ $x-$ Intercept $\left(\frac{17}{16},0\right)$

e)
$$y = \log_2 [-(x+1)] \Leftrightarrow -2^y - 1 = x$$

as
$$y \to +\infty$$
, $x \to -2^{\infty} - 1 = -\infty$
as $y \to -\infty$, $x \to -2^{-\infty} - 1 = -1$
 x -Intercept $\left(-2,0\right)$

Effect of Absolute Value and Squaring

1. $f(x) = \log_b |x|$ or $f(x) = \log_b x^2$ produces a symmetric graph with y intercept at (1,0).

a) If b>1 the graph of f(x) has the shape shown below;

b) If 0 < b < 1 the graph of f(x) has the shape shown below

- 2. $f(x) = |\log_b x|$ produces a non symmetric graph with y intercept at (1,0) with shape as shown below;
 - a) if b > 1

b) If 0 < b < 1

Example 7:

Sketch the graphs of the equations below and each case state the;

a) domain b) range c) asymptote

a)
$$f(x) = \log_5 |x|$$

b)
$$f(x) = |\log_2 x| + 1$$

c)
$$f(x) = 2 - \left| \log_{\frac{1}{2}} x \right|$$

d)
$$f(x) = \ln(x-2)^2$$

Solution

a)
$$y = \log_5 |x| \Leftrightarrow 5^y = |x|$$

as $y \to +\infty$, $x \to \pm \infty$
as $y \to -\infty$, $x \to 0$
 $x - \text{Intercept } (\pm 1, 0)$

Domain is $(-\infty,0)\cup (0,+\infty)$, Range is $(-\infty,+\infty)$ and asymptote is the line x=0

$$b) \quad y = \log_2 x \Leftrightarrow 2^y = x$$

as
$$y \to +\infty$$
 , $x \to +\infty$

as
$$y \to -\infty$$
 , $x \to 0$

$$x$$
 – Intercept $(1,0)$

$$f(x) = \log_2 x$$

The graph of $f(x) = \left|\log_2 x\right|$ is the same as the graph of $f(x) = \log_2 x$ with f(x) < 0 reflected in the x-axis and $f(x) \ge 0$ unchanged

The graph of $f(x) = \left|\log_2 x\right| + 1$ is the same as the graph of $f(x) = \left|\log_2 x\right|$ shifted upwards 1 unit.

Domain is $(0,+\infty)$, Range is $[1,+\infty)$ and asymptote is the line x=0

c)
$$y = \log_{\frac{1}{2}} x \Leftrightarrow \left(\frac{1}{2}\right)^y = x$$

as $y \to +\infty$, $x \to 0$
as $y \to -\infty$, $x \to +\infty$
 $x - \text{Intercept (1,0)}$

The graph of $f(x) = \left| \log_{\frac{1}{2}} x \right|$ is the same as the graph of $f(x) = \log_{\frac{1}{2}} x$ f(x) < 0 reflected in the x-axis and $f(x) \ge 0$ unchanged

The graph of $f(x) = -\left|\log_{\frac{1}{2}} x\right|$ is the same as the graph of $f(x) = \left|\log_{\frac{1}{2}} x\right|$ reflected in the x-axis

$$f(x) = -\left|\log_{\frac{1}{2}} x\right|$$

The graph of $f(x) = 2 - \left| \log_{\frac{1}{2}} x \right|$ is the same as the graph of $f(x) = - \left| \log_{\frac{1}{2}} x \right|$ shifted upwards 2 units.

Domain is $(0,+\infty)$, Range is $(-\infty,2]$ and asymptote is the line x=0 d) $y = \ln x^2 \Leftrightarrow e^y = x^2$

as
$$y \to +\infty$$
, $x \to \pm \infty$
as $y \to -\infty$, $x \to 0$

x – Intercept $(\pm 1, 0)$

$$f(x) = \ln x^2$$

The graph of $f(x) = \ln(x-2)^2$ is the same as the graph of $f(x) = \ln x^2$ shifted horizontally 2 units to the right.

Domain is $(-\infty,2)\cup(2,+\infty)$, Range is $(-\infty,+\infty)$ and asymptote is the line x=2

Domain of Logarithmic function

The domain is given by the expression;

- a) x > 0 if $f(x) = \log_b x$
- b) g(x) > 0 if $f(x) = \log_b g(x)$

c)
$$\frac{g(x)}{h(x)} > 0$$
 if $f(x) = \log_b \frac{g(x)}{h(x)}$

d)
$$\log_a \frac{g(x)}{h(x)} > 0$$
 if $f(x) = \log_b \log_a \frac{g(x)}{h(x)}$

Common and Natural logarithms

- 1. A logarithmic function with the base e is called a natural logarithm and is written as $f(x) = \ln x$
- 2. A logarithmic function with the base 10 is called a common logarithm and is written as $f(x) = \log x$

Example 8

Find the domain of

a)
$$f(x) = \log x^2$$
 b) $f(x) = \log \ln(x-1)$ c) $f(x) = \ln \sqrt{(x^2-1)}$

d)
$$f(x) = \log_7 \frac{3x}{2-x}$$
 e) $f(x) = \log_5 \log_3 \left(\frac{x-2}{x^2-1}\right)$

Solution

a)
$$f(x) = \log x^2 \Rightarrow x^2 > 0 \Rightarrow$$
 Domain is $(-\infty, 0) \cup (0, +\infty)$

b) $f(x) = \log \ln(x-1) \Rightarrow \ln(x-1) > 0 \Rightarrow x-1 > e^0 \Rightarrow x > 2$ Domain is $(2, \infty)$

c)
$$f(x) = \ln \sqrt{(x^2 - 1)} \Rightarrow (x^2 - 1) > 0 \Rightarrow \text{ Domain is } (-\infty, -1) \cup (1, \infty)$$

d)
$$f(x) = \log_7 \frac{3x}{2-x} \Rightarrow \frac{3x}{2-x} > 0 \Rightarrow$$
 Domain is $(0,2)$

e)
$$f(x) = \log_5 \log_3 \left(\frac{x-2}{x^2-1}\right) \Rightarrow \log_3 \left(\frac{x-2}{x^2-1}\right) > 0 \Rightarrow \left(\frac{x-2}{x^2-1}\right) > 3^0 \Rightarrow \frac{x-x^2-1}{x^2-1} > 0$$

 \Rightarrow Domain is $(-1,1)$

Logarithmic Inequalities

Theorem:

If $\log_b x \le \log_b y$;

- a) $x \ge y$ when 0 < b < 1
- b) $x \le y$ when b > 1

Example 9:

Solve the exponential equations;

a)
$$\log(x-1) \le \log(\frac{1}{2}x+3)$$

b)
$$\log_{\frac{1}{5}}(2x+1) \ge \log_{\frac{1}{5}}(x-2)$$

c).
$$10^{\log(\ln|2x-1)|} \le \ln 2$$

Solution

a)
$$\log(x-1) \le \log(\frac{1}{2}x+3) \Rightarrow (x-1) \le (\frac{1}{2}x+3) \Rightarrow \text{Domain is } (-\infty, 8]$$

b)
$$\log_{\frac{1}{5}}(2x+1) \ge \log_{\frac{1}{5}}(x-2) \Rightarrow (2x+1) \le (x-2) \Rightarrow$$
 Domain is $(-\infty, -3]$

c).
$$10^{\log(\ln|2x-1|)} \le \ln 2 \Rightarrow \ln|2x-1| \le \ln 2 \Rightarrow |2x-1| \le 2 \Rightarrow \text{ Domain is } \left[-\frac{1}{2},\frac{3}{2}\right]$$